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Abstract. Two experiments are described in which mirrors were mounted on rotating 
turntables and measurements were made of the frequency of the reflected radiation. The 
order of accuracy was one part in I O ” .  which exceeded that required to detect second-order 
relativistic phenomena. I t  is shown that the mirrors are equivalent to transponder systems 
and that the application of logical arguments to the telemetered observations confirms 
earlier theoretical predictions of the radius and angular velocity ofa rotatingsystemmeasured 
entirely from a point within that system. 

1. Introduction 

Jennison (1964) showed by deductions from the results of an experiment by Champeney 
and Moon (1961) that the radius of a rotating system, measured from a single domain 
rotating with the system, would be rr = r(1 -w2r2/c2)112 and that the angular velocity 
would be CO, = w( 1 - 0 2 r 2 / c 2 ) -  li2, where w and r are the angular velocity and radius in 
the non-rotating laboratory frame and where c is the local velocity of light. Despite 
the logic of the original argument, it was considered advisable to seek confirmation in a 
suitably designed laboratory experiment. It transpires that all the information required 
for verifying the transformations is available from this and other experiments, but it can 
be shown (Ashworth and Jennison 1975, submitted for publication) that the results may 
be derived by the application of the principles of special relativity. In this paper it will be 
shown that if the radius at the rotating observer did not contract relative to that at the 
centre then the results of either the Mossbauer experiment or the following transponder 
experiment would differ from the observations. 

The two experiments described herein, together with a third experiment already 
described (Jennison and Davies 1974) investigate the behaviour of mirrors in rotating 
systems. In analysing reflection at a mirror it is usual to assume lossless and instantane- 
ous reflection. However, if we consider the mechanism involved it becomes apparent 
that the reflection process involves the absorption and re-emission of the wave by the 
conduction electrons. 

Any electromagnetic wave incident on the surface of a conductor penetrates a 
certain distance inside the conductor. The depth of penetration is determined by the skin 
effect. The wave induces a current in the conductor which in turn re-radiates a wave. In 
the case of a perfect conductor the re-radiated wave has the same amplitude as the 
incident wave. The mirrors used in the following experiment were not perfect conductors, 
however. Whzn a current is induced by a wave incident upon an imperfect conductor 
there are losses in the material and the re-radiated wave has a smaller amplitude than the 
incident wave. 
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In a macroscopic system the losses correspond to the requirement of a transponder 
ranging system: that the observer shall be able to extract a small amount of energy in 
order to measure the pulse repetition frequency, the carrier frequency and other para- 
meters of the radiation that he may wish to assess. Mirrors are transponder systems 
receiving the incoming signals and re-radiating them without change of frequency in 
the local frame. This conservation of frequency was demonstrated experimentally to a 
very high order of accuracy in our verification of the absence of a second-order Doppler 
shift for light incident normally on a transversely moving mirror (Jennison and Davies 
1974). It is necessary for the present purposes, however, to demonstrate that the same 
property holds when the mirror is constrained to move in a circular arc normal to the 
incident radiation. 

2. Experiment 1 

The apparatus is shown in figure 1. It is similar to that used in the earlier experiment 
to show that there is no frequency shift from a transversely moving mirror (Jennison 
and Davies 1974). In this case the laser beam is directed onto a 45" mirror at the centre 

Half-si lvered 

Cali brat ion 
tmnducer 

Figure 1. The arrangement of the apparatus for experiment 1. 

of the rotating table and from this mirror it  is reflected onto a vertical mirror at the 
periphery. The returned signal is reflected from a half-silvered mirror to a photodetector 
where it combines with a reference beam to produce interference fringes. As in the 
previous experiment the display on the oscilloscope is synchronized to the rotation of the 
table, and the reference beam can be calibrated by applying a small first-order Doppler 
shift from a piezoelectric transducer. Movement of the calibration transducer produces 
movement of the interference pattern which is displayed on the oscilloscope and confirms 
that the equipment is functioning with sufficient accuracy. 
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The rotating table consists of an air bearing which is spun up and then allowed to 
freewheel, with the drive removed. As the table gradually slows down the display on the 
oscilloscope is observed and changes in the fringe pattern are recorded. Typical observa- 
tion periods were of the order of six minutes, and typical fringe shifts observed were + 4  
whereas second-order relativistic fringe shifts would have been of the order of + 60. The 
radius in the laboratory system was 10.5 cm and the maximum angular velocity of the 
disc was 100 rad s- ’. 

This experiment shows that any frequency shift in the beam reflected from the moving 
mirrors is less than two parts in lo”, which is better than one order of magnitude less 
than any predicted relativistic frequency shift. 

3. Experiment 2 

A diagram of the experiment is shown in figure 2. I t  was designed to show that, for a 
signal sent from the laboratory frame to rotating observers and reflected such that 
incident and reflected beams are tangential to the disc, no relativistic frequency shift is 
produced. 

Ls 

Figure 2. The arrangement of the apparatus for experiment 2. 

The reference beam of the interferometer is sent directly to the detector while the 
other beam is reflected in turn frcm a mirror moving towards the beam and then from a 
mirror moving away from the beam. Interference with such a large path difference is 
possible because of the great coherence length of the laser. The double reflection in the 
second beam is designed to minimize first-order Doppler effects, but because any time 
dilatation effects which may be produced would be independent of the direction of the 
velocity of the mirror, relativistic effects would be additive rather than subtractive. 

Synchronization and display systems operate as already described (Jennison and 
Davies 1974). As in the two previous experiments the rotating table is initially spun up 
and then allowed to freewheel. Here typical observation periods were of the order of five 
minutes, and typical observed fringe shifts varied from + 3 to + 5. 

Fringe shifts, predicted on the assumption that relativistic shifts were present, were 
of the order of + 150. 

This experiment shows there is no relativistic frequency shift to an accuracy of 
better than 5 0;. 
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4. Implications of the experiments 

We now consider the implications of these experiments. First the argument for the 
contraction of the radius as measured by a rotating observer, mentioned in the introduc- 
tion, is produced in more detail to show the role of experiment 1 .  

In accordance with modern methods of laboratory metrication (Sanders 1965), which 
employ either radar or long-range reflection interferometry, the radius CB measured 
from the centre C of a rotating system is 

r = ic( t ,  - t,) = ScN, 

where N ,  is the number of local units of time (ticks of a proper clock) in the interval 
( tr -  tt) between transmission and reception at the centre of either a pulse or an interfering 
wave returned from the periphery. If the pulse, or wave, on reception at C, is immediately 
transmitted back to the point B, a similar measurement may be performed in the following 
interval, N , .  Thus a pulse repetition frequency of 1/N, will maintain a continuous 
measurement of the radius from the centre. A similar operation may be performed by 
an observer at B. I t  would not be necessary for him to install additional equipment 
for he may measure the radius by timing the pulse repetition frequency of his responses 
to the same sequence of pulses on his own local clock. Let this pulse repetition frequency 
be l / " B .  The measurement of radius performed by B could be determined unambigu- 
ously by C if the value of N ,  could be telemetered back to C. But N ,  is the number of 
local units of time at B in the intervals between transmission and reception at B. If both 
the intervals between clock ticks and the intervals between radar pulses are telemetered 
back to C ,  both should be equally transformed in the process and the ratio will be 
conserved. I t  was pointed out by Jennison (1964) that the information rate is subject to a 
second-order Doppler shift. Thus both the radar period and the tick period will be 
received at C shifted to the red by the same factor, (1 - o2r2/c2)"' .  The telemetered but 
uncalibrated pulse repetition frequency at B is received at C as C's own pulse repetition 
frequency, N,.  Calibrating this in the ticks of the telemetered clock, we find 
N ,  = NJ1 -w2r2 /c2 )1!2 .  It does not, therefore, seem to be possible to avoid the 
conclusion that B will measure a radius: 

We now consider the substantive assumptions implicit in the derivation of equation (1). 
(i) That the velocity of light is locally invariant 
(ii) That signals from a standard clock, or a sequence of events timed by such a clock, 

at the centre will be received at the periphery at a faster rate, ( 1  - o J 2 r 2 / c 2 ) -  when 
compared to the local standard (or 'proper') clock. 

(iii) That signals from a standard clock, or a sequence of events timed by such a clock, 
at the periphery will be received at the centre at a slower rate, (1 -w2r2'c2)1r2, when 
compared to the local standard. 

(iv) That in their own local frames transponders at the centre and at the periphery 
transmit signals at the same frequency as that at which they are received and hence 
that a signal from the centre will be returned by the peripheral transponder without 
change of frequency measured in the central frame. 

(v) That the distance defined by equation (1) is a valid measurement of this parameter. 
(vi)  That no events are lost at the transponders, or in transit. 
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We justify assumptions (i) to (v) by the following experimental evidence. 
(i) The Michelson-Morley and subsequent experiments. 
(ii) and (iii) The experiments of Champeney et a1 (1965) and also Farley et a1 (1968). 
(iv) Experiment (1) described above. 
(v) The expression corresponds to the radar distance which is currently used for 

precise measurement and it may also be identified with the standardization and precise 
metrication of length. The standard of length is defined (Sanders 1965) as 1650763.73 
wavelengths in vacuum of the radiation corresponding to the transition between the 
levels 2plo and 'd, of the atom 86Kr. This is employed in reflection interferometry for 
thz metrication of length and equation (1) is tacitly assumed. 

Assumption (vi) has been mentioned by Essen (1971) in other contexts. However we 
disagree with Essen, for unless a physical mechanism is proposed for the loss or gain of 
events, the interpretation of physical experiments must rely on the laws of physics as 
they are known at the present time. On these grounds our assumption is considered 
justified. 

In order to illustrate more clearly why the radius r ,  contracts, consider the 'Gedanken' 
experiment often used by texts on special relativity (see, for example, Rosser 1967). 

In figure 3, A sends a signal to B which is reflected back to A. Z shows the situation 
as seen by B. C' shows the situation as seen by A. By the usual method, if we assume 
y o  = yb we can prove tb = to( 1 - ~ ~ / c ~ ) " ~ ,  and if we assume this time dilatation we can 
prove y o  = yb.  

v -4 

1. 

L 
t- V 

E' 

Figure 3. Light emitted by A and reflected by B as seen in X and ,E' where 
for B and X' is the rest frame for A. 

is the rest frame 

yo = distance between A and B measured in X 
J J ~  = distance between A and B measured in Z' 

r,, = f time from transmission to reception of a signal measured in X 
The interval r b  is not marked on the diagram but corresponds to 
half the time from transmission to reception of a signal measured 
in Z' 

L' = relative velocity 

Consider now the case where one observer rotates around another as shown in figure 
4. If  observer A were to follow the path EC we would have the same conditions as 
above, but A is in fact constrained to follow path DC, and if we assume 

[ (A)  = t (B)(  1 - c ~ ~ ' c ~ ) ~ ! ~  

then y o  # yb, in fact 

yb = yo( 1 - u z / c 2 ) ' : 2 .  
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v-  

Figure 4. Comparison of rotating and linear paths. The diagram is depicted in the rest 
frame of the centre and corresponds, in the case of rectilinear motion, to the left-hand side 
of figure 3 

Whence, in the present context, 

rB = r(1 - r202 ,c2)1’2  

in agreement with equation ( 1  1. But if we now accept equation (1) and let A and B assign 
equal and opposite velocities to each other as required in special relativity we have 

c = o r =  O B ~ B .  ( 2 )  

Substituting from equation ( 1 )  we obtain 
W 2 r 2  -1!2 

0, = 0 1-- ( c . 1  
(3) 

This is substantiated by another argument for the transformation of angular velocity, 
which follows from experimental results. The Mossbauer experiments (Champeney er a1 
1965) have shown that when a standard atomic clock is caused to revolve at radius r 
about a distant centre of rotation, the clock may be recorded at that centre (eg by tele- 
metry) and will be found to tick more slowly than an identical clock at the centre. This 
is an equivalent statement to the existence of the transverse Doppler shift, the effects 
are the same in this context and the dilatation factor is (1 - where v = wr. Let 
the centre of rotation lie on a line in the baseplate which does not participate in the 
rotation; this line can be fixed in the direction of a distant star. If an observer revolves 
with the moving clock he can transmit a single pulse to the centre each time that he 
crosses the line and continue this for a very large number, N ,  of transits so that a long 
series of pulses is telemetered together with the ticking of his standard clock. Both the 
frequency of the ticking of the clock and the frequency of the repetition of the pulses 
will be transverse Doppler shifted when received at the centre so that n,, the number of 
ticks between successive pulses, is conserved in the process of transmission. Upon the 
completion of the Nth transit the central observer will agree that there were N transits, 
and he can determine the rotational period in his system by dividing the total time that 
has elapsed on his local standard clock by N ,  thus deriving n, ticks per revolution. He 
can determine the rotational period that was measured by the distant revolving observer 
by consulting his telemetry record and he obtains the answer n , .  The revolving observer 
therefore determines the period to be shorter than that measured by the central observer 
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by the ratio n,/n,, that is by the factor (1 - cZ icz ) '  Conversely, the frequency of revolu- 
tion recorded by the revolving observer is greater than that recorded by the central 
observer by ( 1  - c2 c2)-  ' '. Both observers will claim that in fheir own small localfries 
there are 2n radians in one revolution, so that the angular velocity determined by the 
revohing observer, w,, is related to that obtained by the central observer, w, by 

in agreement with equation (3). 
The difference between the angular velocities w and w, may be shown to agree with 

the value for the Thomas precession rate. 
If the observer is freely pivoted, experiencing no constraining torque from other 

objects participating in the rotation (eg neighbouring parts of a rotating disc) and was 
not given such a torque in a previous epoch, in particular in the initial spinning-up of the 
system, then he will act as a free compass and retain his orientation relative to the fixed 
stars. The direction of the centre of the system will then appear to him to rotate relative 
to the fixed stars at U,. If he is bonded to the rotation or if he is perfectly free but has 
once been given a torque to bring him into synchronous rotation with his environment 
then it will appear that the universe rotates relative to him at -cor, 

The observations of the freely pivoted revolving observer and the central observer 
may be related by an expression in the form of an incremental angular velocity (Mdller 
1972) 

(4) 

which is the Thomas precession. In equation (4), since U x fi is a constant vector per- 
pendicular to U and 8, one may substitute c 2 0  for (U x fi). Equation (4) then becomes 

KIT = ( -  l,,c2)[(1 - c 2 , P ) -  - I](a x it) 

-OT = -"[(I - u 2 / c 2 ) - ' f 2 - 1 ]  = o - - 0 ( 1 - c 2 , c 2 ) - 1 . ~  

whence, from equation (3), since c = wr, 

= w--0,. ( 5 )  

The spatial direction given by the distant stars when referred from one observer to the 
other therefore exhibits a precession simply because they each obtain a different angular 
velocity for the common rotating system, in this case the disc, relative to the same fixed 
stars. 

5. Conclusions 

We have described two experiments which investigate the behaviour of mirrors in 
rotating systems. By considering these mirrors as transponders we have shown that 
these experiments; together with others as listed, substantiate the note by Jennison (1964) 
and imply that: (i) the radius of a rotating disc, measured by an observer on the circum- 
ference of the disc is 

rr = r 1-- i ':"."I l ' *  
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where rrr  r,  w, c are as defined in the introduction, and as a necessary result of this: (ii) 
the angular velocity measured by the observer is 

0, = w I-- ( r:zl - I i 2  

The equation for angular velocity was also derived independently from an argument 
involving clock rates, and it was then shown that the difference between the angular 
velocity of the disc measured at the centre and that measured at the circumference is 
equal to the Thomas precession. 

These transformations show that if an observer moves out across a uniformly rotating 
system, his distance to the centre contracts as he passes beyond the inertial radius 
r = c/(wJ2), and approaches zero when the inertial radius is the maximum c/w, but his 
angular velocity continues to increase, tending to infinity at the singularity r = cjw. 

For distances large compared to the radius of the disc, in the directions described, it 
may be shown from the experimental results that distances measured by the rotating 
observer are contracted by (1 - r2w2/cz)1’2  compared with distances measured by the 
observer in the laboratory frame. For very small distances (<< radius) the geometry is 
similar to that for rectilinear motion and the contraction is less severe. In the limit, for 
infinitesimal distance from the observer on the disc, there is no contraction normal to 
the motion. 
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